Programmable Logic Controllers:

An Emphasis on Design and Application

Fourth Edition

Kelvin T. Erickson

Missouri University of Science and Technology

Copyright © 2023 Dogwood Valley Press, LLC. All rights reserved.

No portion of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, including electronic, mechanical, photocopying, scanning, recording or otherwise, except as permitted under the 1976 United States Copyright Act, without explicit, prior written permission of the publisher except for brief passages excerpted for review and critical purposes.

This book was set in Times New Roman and printed on acid-free paper.

Printed in the United States of America
ISBN 978-0-9766259-6-4

Dogwood Valley Press, LLC

http://www.DogwoodValleyPress.com

1604 Lincoln Lane Rolla, MO 65401 1-573-426-3507

10 9 8 7 6 5 4 3 2 1

Dedicated to Fran, Esther, David, Amanda, Ezra, and Elijah

CONTENTS

Preface			vii
Chapter 1	Introd	1	
	1.1	1	
	1.2	Introduction Automatic Control in Manufacturing	1
	1.3	Control System Classifications	2
	1.4	History of the PLC	6
	1.5	PLC Versus Other Technologies	13
	1.6	Basic PLC Architecture	15
	1.7	Chapter Summary	20
	Refer	rences	20
Chapter 2	Basic	23	
	2.1	Introduction	24
	2.2	Simple Ladder Logic	24
	2.3	Basic Ladder Logic Synbols	29
	2.4	Ladder Logic Diagram	38
	2.5	PLC Processor Scan	43
	2.6	Programming with NC Contact	53
	2.7	Start/Stop	55
	2.8	Transitional Contacts and Coils	60
	2.9	Chapter Summary	66
	Refer	rences	66
	Probl		67
Chapter 3	Mem	ory Organization and Addressing	83
	3.1	Introduction	84
	3.2	IEC 61131-3 Memory Model	84
	3.3	ControlLogix and CompactLogix Memory	86
	3.4	MicroLogix and SLC-500 Memory	96
	3.5	Siemens S7 Memory	108
	3.6	Modicon Memory	124
	3.7	Emerson Memory	134
	3.8	Chapter Summary	145
	References		145
	Problems		147

ii Contents

Chapter 4	Input/0	Output Modules and Installation	157
	4.1	Introduction	158
	4.2	Discrete Modules	160
	4.3	Analog Modules	174
	4.4	Specialized Modules	181
	4.5	Installation Wiring	186
	4.6	Chapter Summary	202
	Refere	*	202
	Proble	ems	205
Chapter 5	Timers	s and Counters	207
	5.1	Introduction	209
	5.2	IEC Timers and Counters	210
	5.3	ControlLogix Timers and Counters	210
	5.4	MicroLogix/SLC-500 Timers and Counters	219
	5.5	S7 Timers and Counters	225
	5.6	Modicon Timers and Counters	240
	5.7	Emerson Timers and Counters	250
	5.8	General Timer and Counter Situations	258
	5.9	Examples	259
	5.10	Chapter Summary	280
	Refere	ences	281
	Proble	ems	282
Chapter 6	Seque	ntial Applications	315
	6.1	Introduction	316
	6.2	Function Chart	317
	6.3	Implementing Function Chart in Ladder Logic	323
	6.4	Complicated Reset Operation	344
	6.5	Parallel Branching	363
	6.6	Key Questions in the Sequential Design Process	371
	6.7	Manual and Single-Step Sequential Operation	372
	6.8	Non-Repeating Sequential Operation	374
	6.9	Chapter Summary	375
	Refere	ences	376
	Proble	ems	378
Chapter 7	Compa	arison and Computation	453
	7.1	Introduction	454
	7.2	Conversion of Physical Quantity	454
	7.3	IEC Comparison and Computation	459
	7.4	ControlLogix Comparison and Computation	459
	7.5	MicroLogix/SLC Comparison and Computation	467
	7.6	S7 Comparison and Computation	476
	7.7	Modicon Comparison and Computation	491
	7.8	Emerson Comparison and Computation	502
	7.9	Application Caveats	510
	7.10	Examples	510

Contents	iii	

	7.11	Chapter Summary	534
	Refere	534	
	Proble	ms	540
Chapter 8	Other l	623	
	8.1	Introduction	624
	8.2	Other IEC Function Blocks	625
	8.3	Other ControlLogix Blocks	626
	8.4	Other MicroLogix/SLC-500 Blocks	644
	8.5	Other S7 Blocks	658
	8.6	Other Modicon Blocks	676
	8.7	Other Emerson Blocks	687
	8.8 8.9	Examples Chapter Summers	700 722
	Refere	Chapter Summary	723
	Proble		724
Chapter 9	Other 1	Function Chart Implementations	731
•	9.1	Introduction	733
	9.2	Move-Based Sequence	734
	9.3	Counter-Based Sequence	753
	9.4	Shift Register-Based Sequence	780
	9.5	Implementation Comparisons	802
	9.6	Unstructured Sequence	803
	9.7	Chapter Summary	808
	Refere		808
	Proble	ms	809
Chapter 10	PID Co	ontrol	811
	10.1	Introduction	814
	10.2	Feedback Control Performance	818
	10.3	PID Controller	822
	10.4	PID Controller Tuning	831
	10.5	PID Control Enhancements	851
	10.6 10.7	Operational Aspects PLC PID Function Blocks	863 864
	10.7	Examples	889
		Chapter Summary	902
	Refere	÷ • •	904
	Proble		906
Chapter 11	Function	on Block Diagram	919
	11.1	Introduction	920
	11.2	IEC 61131-3 Function Block Diagram	921
	11.3	ControlLogix Function Block Diagram	924
	11.4	S7 Function Block Diagram	942
	11.5	Modicon Function Block Diagram	946
	11.6	Emerson Function Block Diagram	949

iv Contents

	11.7	Examples	951
	11.8	Chapter Summary	974
	Refere	974	
	Proble	ems	975
Chapter 12	Structi	987	
	12.1	Introduction	988
	12.2	IEC 61131-3 Structured Text	988
	12.3	ControlLogix Structured Text	997
	12.4	S7 Structured Control Language	999
	12.5	Modicon Structured Text	1001
	12.6	Emerson Structured Text	1002
	12.7	1	1004
	12.8	Chapter Summary	1023
	Refere		1023
	Proble	ems	1024
Chapter 13	Instruc	ction List	1025
	13.1	Introduction	1025
	13.2	IEC 61131-3 Instruction List	1025
	13.3		1030
	13.4		1034
	13.5	Emerson Instruction List	1034
	13.6	Examples	1035
	13.7	Chapter Summary	1043
	Refere		1043
	Proble	ems	1044
Chapter 14	Seque	ntial Function Chart	1045
	14.1	Introduction	1046
	14.2	IEC 61131-3 Sequential Function Chart	1046
	14.3	ControlLogix Sequential Function Chart	1064
	14.4	S7 Sequential Function Chart	1071
	14.5	Modicon Sequential Function Chart	1081
	14.6	Examples	1091
	14.7	Chapter Summary	1118
	Refere Proble		1118 1119
Ch 15	Tr 1.1	Late of a	1121
Chapter 15	17oub	leshooting Introduction	1121 1122
	15.1	General Troubleshooting Procedures	1124
	15.2	Troubleshooting I/O Modules	1124
	15.3	Processor Status Indicators	1135
	15.5	Program Problems	1138
	15.6	Communication Problems	1141
	15.7	Designing for Fault Diagnosis	1143
	15.8	Chapter Summary	1144

	Refere	ences	1145
Chapter 16	Sensor	rs and Actuators	1147
	16.1	Introduction	1149
	16.2	Discrete Sensors	1149
	16.3	Analog Sensors	1163
	16.4	Discrete Actuators	1202
	16.5	Analog Actuators	1209
	16.6	Chapter Summary	1220
	Refere	÷	1220
Chapter 17	Comm	nunication Networks	1223
	17.1	Introduction	1224
	17.2	Network Protocols	1226
	17.3	Ethernet	1233
	17.4		1234
	17.5		1238
	17.6	PROFIBUS (DP, PA, PROFINET)	1244
	17.7	INTERBUS	1249
	17.7	AS-i	1251
	17.9	Allen-Bradley Proprietary Networks	1253
	17.10	Modicon Protocols	1254
	17.11	Emerson Proprietary Networks	1257
	17.11	Ladder Logic Communication Blocks	1258
	17.12	Heartbeat Logic	1288
	17.13	Chapter Summary	1290
	Refere	*	1290
	KCICIC	nices	1290
Chapter 18		n-Machine Interface	1295
	18.1		1297
	18.2	7 1	1297
	18.3	- C	1300
	18.4	Graphical HMI Design	1303
	18.5	Graphical HMI Development	1324
	18.6	Chapter Summary	1329
	Refere	ences	1330
Chapter 19	Contro	1331	
	19.1	Introduction	1331
	19.2	Factory Automation Network Security	1332
	19.3	PLC Processor Security	1335
	19.4	Chapter Summary	1347
	Refere		1348
Chapter 20	Selecti	ing a PLC	1351
-	20.1	Introduction	1352
	20.1		1353

vi Contents

	20.3	PLC Families	1355
	20.4	Chapter Summary	1360
	Referei	nces	1360
Chapter 21	Contro	l Projects	1363
	21.1	Introduction	1363
	21.2	Typical Control Design Project	1364
	21.3	Example Control Requirements Definition	1372
	21.4		1379
	21.5	8	1437
	21.6	Chapter Summary	1458
	Referei		1458
	Proble	ms	1460
Chapter 22	Examp	1463	
	22.1	Introduction	1463
	22.2	Coal Handling System	1463
	22.3	Multi-Unit Chemical Process	1469
	22.4	Chapter Summary	1474
	Referei	nces	1474
Appendix A	Numbe	er Systems and Conversions	1475
Appendix B	Electric	cal Diagram Symbols	1481
Appendix C	Piping	and Instrumentation Diagram (P&ID) Symbols	1484
Glossary			1487
Index			1503

PREFACE

The field of automatic control has been undergoing a transformation over the past forty years. Forty years ago, the engineering undergraduate had a course in feedback control theory and those interested in control engineering secured a position in the aerospace or chemical industries. Due to various factors, the number of control engineering positions in the aerospace industry has declined, but the number of control engineering positions in manufacturing has dramatically increased so that the majority of control engineering positions is now in manufacturing and involves PLCs.

This book presents the subject of programming industrial controllers, called programmable logic controllers (PLCs) with an emphasis on the design of the programs. Many texts teach one how to program the PLC in its languages, but little, if any, attention is paid to how does one attack the problem: "Given a set of operational specifications, how does one develop the PLC program?" This book develops the design process: the tasks involved, breaking the program into manageable pieces, standard code for the various parts, and handling the sequential parts of the problem. The emphasis is toward those who will be programming PLCs.

Because of its popularity, ladder logic is the language that is used for the majority of the text. The industry trend is toward using the IEC 61131-3 (formerly IEC 1131-3) standard, and so it is an important language. However, IEC 61131-3 is only a voluntary standard and individual manufacturers have some freedom in the implementation. Therefore, the Rockwell ControlLogix, Siemens S7, Modicon M340/M580 and Emerson implementations of the 61131-3 standard are covered. Because of their large installed base, the Rockwell MicroLogix/SLC-500 PLC languages are also covered.

Due to the limitations of ladder logic, the IEC 61131-3 standard defines four other languages: function block diagram, structured text, instruction list, and sequential function chart. All but the instruction list language are becoming popular. Therefore, this text also covers these four languages.

Since a typical manufacturing plant may contain discrete, continuous, and batch processes, all of these applications are treated in this text, although the emphasis is on discrete and continuous processes. The emphasis is on a methodology that can be applied to any automation project, regardless of the size.

Throughout, the book contains example problems demonstrating good design practice. In addition, these problems are solved with each PLC covered in the book. The text culminates in two full-length case studies where the application of the design techniques to a large problem is illustrated.

This book takes a practical approach to the design of PLC control systems. Some mathematical theory is used to backup the presentation on PID controllers. However, the theory is not detailed and can be omitted.

Except for Chapters 1 and 13, every chapter begins with a scenario that reflects the experience of the author and his colleagues in the challenging world of factory automation.

These scenarios present a small problem and the solution and are intended to illustrate troubleshooting techniques.

Objectives

The main objectives of this text are to teach:

- PLC programming languages (with emphasis on ladder logic)
- Approach to sequential problems
- Good program design practice
- Simple PID control tuning
- Introduction to sensors and actuators
- Factory communications
- Human-machine interface (HMI) concepts

Content Overview

The book starts by introducing programmable logic controllers (PLCs) and their distinguishing characteristics. Chapters 2 – 5 cover basic ladder logic programming: contact, timer, and counter instructions. As part of the basics, the memory structure of the five particular PLCs and installation topics are treated. Chapter 6 covers ladder logic program design for sequential applications, probably the most significant contribution of the text. Chapters 7 and 8 treat computation, comparison, and advanced ladder logic instructions. Alternate sequential implementations in ladder logic are covered in Chapter 9 and PID controller tuning is covered in Chapter 10. Chapters 11 – 14 cover the other four IEC programming languages: function block diagram, statement list, instruction list, and sequential function chart. PLC troubleshooting is covered in Chapter 15. Sensors and actuators appear in Chapter 16. Chapter 17 introduces factory communication networks. Operator interface, often called human-machine interface (HMI), issues are treated in Chapter 18. Control system security is addressed in Chapter 19 and PLC selection is introduced in Chapter 20. Chapter 21 presents the perspective of an entire automation project, bringing together the various pieces of PLC control design. Chapter 22 outlines two full-length project case studies. One case study is for a process that is primarily discrete and the other case study is for a process that is primarily batch and continuous in nature. Details about number systems and drawing symbols are included as appendices, rather than interrupt the flow of the text material.

The Audience

This book primarily serves the academic market, at the junior or senior undergraduate electrical, mechanical, or industrial engineering or engineering technology level. This text is also suitable for the two-year technical school market. There is nothing in the material that requires a college degree, though the material will be more challenging than the typical PLC textbook for this level of student.

In addition, this text serves the professional market. Economic and regulatory pressures in the manufacturing, chemical, petrochemical, pharmaceutical, and food industries have forced control engineers to design new systems or retrofit existing control

systems. Hence, there are many control engineers (primarily chemical, electrical, and mechanical) who need to rapidly educate themselves in an area of technology in which they are probably only somewhat familiar. This book is valuable to this audience.

Online Content

Supplementary online content for the text is posted at **www.dogwoodvalleypress.com** and includes:

- 1. PLC project files and print-outs for the text examples.
- 2. Additional problems with solutions.
- 3. PID tuning demonstrator program.
- 4. Design documentation for the coal handler project in Chapter 22.
- 5. Preliminary design information for the multi-unit chemical process in Chapter 22. This is a set of design information and standards for the process, intended to be used for a classwide control system project. There are no mechanical or electrical drawings.

Fourth Edition

The fourth edition primarily updates the Rockwell, Siemens, and former GE processors, but there are other changes throughout. In 2019, Emerson Electric Co. purchased the Intelligent Platforms division from General Electric. So, the former GE PLCs are now branded as Emerson PLCs. Only the PACSystems and VersaMax processors are currently available. The appearance of the ControlLogix blocks is changed to match the modifications introduced in Logix Designer revision 31. Addressing for 5069- and 5094-series I/O modules has been added to Chapter 3 and new ControlLogix blocks related to process control have been added to Chapter 10. The Siemens S7-1500 CALCULATE block, introduced in version 14, has been added to Chapter 7. An implementation of the S7-300/400 FIFO/LIFO blocks that were not ported to the S7-1500 are described in Chapter 8 and implemented in the SCL language in Chapter 12. New S7-1500 blocks for process control are described in Chapter 10. Information on input and output buffering has been added to Chapter 2. In Chapter 9, the move-based implementation of sequential operations is added and the section on sequencer blocks is removed. A structured text implementation of sequential operations is added to Chapter 12. The Chapter 16 problems and the appendix with the thermocouple conversion polynomial coefficients have been deleted. In Chapter 17, the WorldFIP network has been removed. Chapter 19 is updated for changes in the security features of the processors. The implementation of sequential operations in Chapter 21 is changed to the move-based sequencer. In addition, simulation of the process with the ControlLogix and S7-1500 processors is changed to add (and emphasize) module inhibits. The multi-unit chemical process in Chapter 22 is now larger. Lastly, all of the chapter problems have been replaced with new problems.

Throughout the text, ControlLogix refers to both the ControlLogix and CompactLogix controllers, unless noted otherwise. Similarly, S7 refers to S7-200, S7-300, S7-400, S7-1200, and S7-1500 processors. The wording "Step7 Portal" refers to the S7-300/400/1200/1500 processors programmed with the Step7 Portal software and "Step7 Classic" refers to the S7-300/400 processors programmed with the Step7 Classic software. The Modicon material features the M340 and M580 processors programmed with

EcoStruxure Control Expert software. The material on Emerson processors favors the PACSystem processors, though VersaMax processors are also covered.

Acknowledgements

The author wishes to acknowledge the beneficial suggestions and comments of many colleagues. Steve Ingracia provided the sample panel specification in Chapter 4. Bill Bichler, Dean Ford, and Esther Erickson reviewed drafts of the first edition of this book and provided many suggestions and corrections to improve the final product. Ken Ball provided more information on the history of the PLC and John Crabtree provided helpful suggestions for the second edition. I especially thank Esther and Fran Erickson for correcting the entire manuscript for grammatical errors, and Fran for doing the initial typesetting.

Portions of this material were taught in industrial short courses and university courses and the students are acknowledged for their help in pointing out errors in the text and where the presentation was unclear.

The following are trademarks or registered trademarks of Rockwell Automation and its various subsidiaries: Allen-Bradley, Compact 5000 I/O, CompactLogix, ControlLogix, Data Highway Plus, DH+, FactoryTalk, FactoryTalk Linx, GuardLogix, Logix 5000, MicroLogix, Pico, PLC-2, PLC-3, PLC-5, Point I/O, Rockwell, Rockwell Automation, Rockwell Software, RSLinx, RSLogix, RSLogix 500, RSLogix 5000, RSNetWorx, SLC, SLC-500 SmartGuard, Studio 5000, and Studio 5000 Logix Designer. SIMATIC is a registered trademark of Siemens AG. The following are trademarks or registered trademarks of Schneider Electric: 984, BP85, Concept, EcoStruxure, FactoryCast, M340, M580, Modbus, Modbus Plus, Modicon, Momentum, Premium, and Quantum. The following are trademarks of Emerson Electric, Inc. and/or its affiliates: PACSystems, Series 90, and VersaMax. FOUNDATION is a trademark of Fieldbus Foundation. ControlNet is a trademark of ControlNet International, Ltd. CIP Security and DeviceNet are trademarks of ODVA, Inc. PROFIBUS and PROFINET are registered trademarks of Profibus Nutzerorganisation, e.V. P-NET is a registered trademark of the International P-NET User Organization. EtherCAT is a trademark of Beckhoff Automation GmbH. Ethernet is a trademark of Digital Equipment Corporation, Intel, and Xerox Corporation. Ethernet/IP is a trademark of ControlNet International under license by ODVA, Inc. SERCOS interface is a trademark of the Interests Group SERCOS interface e.V. (IGS). VisSim is a registered trademark of Altair Engineering, Inc., Troy, Michigan. MATLAB and SIMULINK are registered trademarks of The Mathworks, Inc., Natick, Massachusetts. Excel, Microsoft, Windows, and Visual Basic are registered trademarks of Microsoft Corporation. NFPA 70, NFPA 70E, NEC, and National Electrical Code are registered trademarks of the National Fire Protection Association.

Disclaimer

Information furnished herein is believed to be accurate and reliable; however no responsibility is assumed for any errors. The user assumes full responsibility for the accuracy and appropriateness of this information.